FPGA BASED VGA DRIVER
AND ARCADE GAME

ARMANDAS JARUSAUSKAS
THIRD YEAR INDIVIDUAL PROJECT

2009/2010

SCHOOL OF ENGINEERING & DESIGN
UNIVERSITY OF SUSSEX

creative This work is licensed under the Creative Commons
@ Attribution 3.0 License. To view a copy of this license,

commons visit http://creativecommons.org/licenses/by/3.0/

Abstract

Field-Programmable Gate-Array (FPGA) technology is gaining popularity among Application-Specific
Integrated Circuit (ASIC) designers. Ease of development and maintenance makes FPGAs an attractive
solution to many speed and efficiency-critical applications. The purpose of this project is to explore the
world of FPGAs by implementing an arcade game on top of a VGA driver. The project was implemented
on Xilinx Spartan-3E development board using VHDL hardware description language.

The project was started by learning VHDL as well as familiarising with the Spartan-3E development
board and Xilinx ISE WebPACK design software. A number of simple applications were developed in
order to comfortably proceed on to investigation of working principles of a VGA driver. It turned out
that the synchronisation logic was rather trivial and that the custom implementation would not add
much value to the project.

VHDL implementation of the classic Pong game was the first major task of the project. Plong, as it was
named, is a two-player game, where each player tries to to hit a ball towards the opponent. A number
of basic features, such as acceleration of the ball, sound output and textual information display, have
been implemented. As this game was developed in the early stage of the project, complexity was
consciously avoided.

The objectives the second game, on the other hand, were focused on technical features and other
improvements. Still monochrome images were exchanged for colourful animations, sound output was
made more sophisticated by adding a tune player, Nintendo game pads replaced on-board switches as a
user input interface and a number of other modules were developed. The theme was chosen to
resemble the Space Invaders game, but all graphic elements were designed from scratch.

To make the project more complete and self contained, the two games were combined into a single
application, with a menu screen to allow user to choose which game to play.

Lastly, an adaptor board, for connecting NES game pads to the development board, was designed and
built. It facilitates the communication between the controllers and the FPGA. The board also hosts a
piezoelectric buzzer for sound output and a reset switch.

The project was complete and fully functional before the deadline. While there is still a lot of room for
improvement, all set objectives, and more, were met.

Statement of originality

I hereby declare that this report is my own work and to the best of my knowledge it contains no
materials previously published or written by another person, or which have been accepted for the
award of any degree or diploma at any educational institution, except where due acknowledgement is
made in the report itself.

Acknowledgements

First supervisor: Dr Ahmet Aydin
Second supervisor: Dr Christopher Harland

I would like to thank the following people for all the help and support:

¢ Ahmet Aydin for his time and support during the project and for letting me borrow the FPGA
development board.

¢ Sam Beardsmore-Rust for general support and help with project proposal.
e Philip Watson for 100-pin connector design files and other help.
¢ Martin Nock for help with PCB manufacture.

e David Smith, from the mechanical workshop, for his excellent work on a plastic case for my
adaptor board.

Table of Contents

1 INTRODUCTION 9
U Y T T VR o TE =T o 1o o R 9
1.2 Project aims and plan........ueiiiiiiiiiieinieciecnnecneessee st sss s sae s ssane e s 9

2 BACKGROUND 9
2.1 Field-Programmable Gate Arrays........ciicrcceiiennneriesssnsiesssssssssssssssssnsssssssnssssssssssssssnes 9

XIlINX VEISUS AILEIa...cueieiieieieeieetesteseet ettt ettt et e st st e st e sbe et e besbesae et e st e saseesseesnsaensaesanenns 9

2.2 Hardware description langUAages...........ccocveeiiiireeiininrnniisssnsinsssnsissssassssssssssssssssssssssssses 10
VHDLL. ettt ettt st e s st e s s re e e s re e e s s s baeessanste s s nraeesensaeesennetesannanaaeeesssassnnnns 10
Digital SYStEMS tNEOIY....cvirieeeeieierieeteere ettt ettt et et sbe e s e saesbe e baesabessbaenas 10

OtNEE HDLS....eeeteeeeeeeteteree ettt ettt et sttt sae st e b e b e s st et e b e s be e st et e b e sbeesnessensesnnesaseenne 10

2.3 Development BOard...........eiiiiiiiieeiiiiiiniineeiiiienninnneetiiess 10
T 1
HAIAWAIE......eiieeeieieeeeet ettt sttt ettt s b s b s et e st e s ae et esbesbe e st e besaesseenbensessaensansaenns 11
MU ettt ettt ettt st st e st et e st e s et et e et e st e s et s e e st e saeesaeesaee e s reeenane 11

2.5 NINteNdo CONEFOIIELS......cciiiiieeiiiieniiininerienrnetiensnetiessnnesssssnnssssssnsssssssnsssssssssssnnsassssssens 12
2.6 Principles of game implementation............cciiiiriiiiinciiinnnneniennneneenssnesessssnssssssnnanes 12
LOGIC DIOCKS. .ttt sttt ettt sttt b e s bt st e st e st e e s et et e sbe st ebeesabesnbaenane 12

(0]][Tol K3 ST P TP POOPRPPRTPRPRRRPO 12

3IMPLEMENTATION 13

2Rt T TR 13
(6o 1= PO OO PRT OO POSROOPRRPSRRPRRPO 13
RESUILS. .. teteetieteterte ettt ettt ettt s b e et e st e e be e st e b e s be s st et et e sa e e s et e sbe e st e beesabeebaeenbeenaas 13

3.2 NES controller interface........... i iiiiiniiiinniiinnnntiennneniessnssissssssssssssssssssssssssssssssasses 14
00 ettt ettt sttt ettt et s bt et e e b e b et e s h e e R e Rt e b e b e e Rt et e b e e ae e Rt e b e heeat et e besreeneebennnena 14
RESUIES. .. ettt t e st s b st e st e s te s st e sab e s st e satesatesaeessaesate s baeenabae e abaesnnas 14

3.3 GRAPRICS. .ttt ettt saes e s sans s s ssas s sesssas s s s s snsssssssassesssanasesssnaesessssssnanane 14
SEOMINE IMAEES. ...ttt sttt s e st e st e st e sae e s st e s bt e s st e s st e s st esmeeesemeeesneeesneeesan 15
GELEING the PIXEIS..uviieriiiieiereeeere ettt s be et et esbe s e e aesbe e aaesaneens 15
MOVING IMAZES.... ittt sttt st st e st e st e s st e bt e bt e s st e bt e be e bt e st e bt e beeaseeaseeaneeesaneessanes 16
COlOUN IMAEE STOTAGE.c..veiteiiieterierteeiteeite et e steste st e satesate st esatesate st esseesssesssesssassassnssessnssessnraesnnne 16

2 3 =) QB (T =T o 1 T 17
0] 01 PRSPPI 17
(] g o TSP S O U OSSO POUROOPO PR PPTUPRRPRON 17

3.5 Binary t0 BCD CONVEISION......ccccceeiiiireeiienrneiiessnneiesssnssssssnsssssssssssssssssssssssnssssssassssssssnnans 17

2o L1 T N 18
FreQUENCY BENEIATON . .. ittt ettt s e s e e st e s bt e sne e s reesamnee e e semreneesnnee 18

SOUNT ROM ittt sttt st st ss e sttt b et e b e b e e bt e sbeesanesneessnesaneenne 18

P LAY B ettt sttt b e s h et e s b e a et e s b e e h e et et e b e e a e et e beebe et ebeenbaenane 18

4 PONG 19
4.1 STFUCTUR@....ccceeiiiiinnnnnteeeniciinnnteeeesssssssnaeeeesssssssssseeesssssssssssesssssssssssssasssssssssssssesssssssssssssnnss 19

B C g T 1 1 oS 19
MIN TOZIC.utiutiiiriieieiesiere ettt ettt ettt st et et e st e e ae et e s beebe et e besbesaeenbenbesnsaenaseensaensns 19

(oo [o | L [~ oSS SO OSSPSR URU PP 20

Ball IOZICu 1 utitiriiiieierteetete sttt ettt et sttt e b e b et et e s be e be e st e e beennbaeneas 20

oo PP PPN 20

4.3 SouNdS & USEr INPUL......cueiiiiiiiiiiieniiinineiinintiesssssiessasans 21
SOUNTS .ttt bbb bbbt s b bt e b e b 21

USEE INPUL ettt ettt ettt s e st e s e e st e st e satesat e satesat e s bt e s st esatesatesbeesatesstessaesseenseessaanseeens 21

5 SPACE SHOOTER 21
T B CT Ty T=T o1 R 21

I € - 0] 11Tl 22
IMIN TOZIC.utiutiiiriieiete ettt ettt et et b e st s st et et e st e e ae et e s besbe e s e sesbesseenbenbesnsaesasesnsaennns 22

ALIBNIS ...ttt b bbb e n e b 22
SPACESNIP AN MISSII...iiiiiiiiieeiee ettt ettt e s e e abe e ssataesssaesnnnaesas 22
EXPIOSION TOZIC..uuiuiiiiiieiiiieienieeteere ettt sttt ettt et sb s bt et et sbesae e b e e beesabesabeenaeesanes 22

SCOre and Vel diSPlay.....coeoiiieririiieieeeee et s 23

6 COMPLETING THE PROJECT 23
6.1 GAaMe SEIECLION MENU......ccouueirieiiiniiiecniecceetesaeesets st essatsssesssssesssssssssssssssssssssesenns 23

6.2 Combining the applications...........cooiiiiiiriiiiniiiiinniineeiesnessessessessassssssssssssssssses 23

7 ADAPTOR BOARD 23
7.1 Reverse engineering the controllers............iiiiiiiiiiiiiieiicneetcceeccceeeeesaeee 23

7.2 TTL 7/ CMOS level CONVEIrSION.........ciiiiieiiiiieiiiiieticinetissneesssasesssssssesessssesssssssssssssees 24
FPGA 10 Shift FEZISTON cuuiiuiiiirieeitetetereet ettt sttt sbe st et sbe s e et e besbe e b esaesaeesaennenas 24

Shift reZISTEr t0 FPGA.....coiieieeiieterieeteetetere ettt sttt ettt sb e s bt besbe s s et e ssesaesanennens 24

7.3 B0Ard deSiZN.....uuuueeeiiiiiiiiiineeiiiiiiiinsnneniiesssssssnsesssssssssssnsssssssssssssssssssssssssssssssssssssssansssssnns 24
SCNEMALIC CAPTUIE....ieieieteeeeeteee ettt sttt et s et et s bt e e e st e s b e saaesbeesaseenaesanens 24

PCB 1aYOUL ABSIZN.c.uiiiiiiiiiiieiieierreeitetete sttt sttt st e sbesre st b e s st s st sb e b e ssee e e sabesneesnsesans 24
MANUFACEUIE. ..ttt ettt ettt ettt e st e s b e et et e sbe st e b esbesbe e s entesaesseensensessaesane 24

8 DISCUSSION 25

B IS S U uureuieeieuerererteerereereesressasssessessssssessessssssessessssssessessssssssssssssssesssssssssssssssnssensssesassennsne 25

PONE Dall ACCEIEIATION. ..cuiitiiieerecteee ettt e e s aa e ebeesaaesaes 25
SYNChroniSation ProbBIEMIS....c..coi ittt sttt et s b e saaesabeenne 25

F o I=] o1 (o] gl o To =1 o FOu T T ORIt 26
BiNary-t0-BCD CONVEISION...cccutiiiiriieieeitieieete ettt eteetestesate st e sate st e satesae e st e saeesseesseesaseesnsaesnnes 26

8.2 FUItNEK WOKK......uueireeiiineiiniiineiinntinetesnecssetssaessssessssesessesssssssssssssssssssssssssssasessssannes 26

9 CONCLUSION 26
REFERENCES 27
BIBLIOGRAPHY 27
APPENDIX A 28
Initial technical Proposal............ ittt aaaas 28
APPENDIX B 29
Project Parts liSt........ ittt ettt sse s ass s s s s s an s se s anne e 29
APPENDIX C 30
[=T ot A] =1 TR 30
APPENDIX D 31
NES Controller: equivalent schematic diagram............ccocevvuerviuerirernssnercscecrcssssneecnnennne 31
APPENDIX E 32
Python script for generating VHDL ROM from images........cccccceererrcericnnnerecssnnnneneessnennes 32
APPENDIX F 33
Adaptor board schematic diagram...........cocceiiiiriiiiinriiiiinneniinnnsnniensssniessssssessssssssssssssens 33
APPENDIX G 34
Adaptor board PCB: top and bottom layer masks............cccceeiiieriiiieiniisiiencsieeicinnenen. 34
APPENDIX H 35

PROtOZIaPRS....caeeeiiiiiieeeniiiicinneetiiiessssnnnestinssssssnssesss 35

FPGA BASED VGA DRIVER
AND ARCADE GAME

1 INTRODUCTION

1.1 About this report

This report covers the work done during the
course of the project. An introduction to core
concepts relating to the project is given in Chapter
2 section. Chapter 3 describes how the main
building blocks, used to create a game, were
developed, while Chapters 4, 5 and 6 go into
game-specific details. Design of an adaptor board,
connecting game pads to the development board,
is described in Chapter 7. Report is finished by
discussing some of the issues experienced during
the project, and Conclusion.

Throughout the report, you will see notes like
this:

Project - filename.vhd

It is a pointer to a relative source file. It may be
helpful, if one needs to see the implementation
details.

The report is accompanied by a printed VHDL
code listing and a Compact Disc. The CD contains
all the relevant material in digital format,
including this report, VHDL code, scanned version
of engineering logbook and more.

1.2 Project aims and plan

The aim of this project was to explore the
capabilities of modern programmable logic
devices while getting hands-on experience of
FPGA development.

The above definition is rather abstract and can be
hard to assess. For this purpose, a number of
objectives were set. The initial technical proposal
can be found in Appendix A. Below, is the
amended list of objectives.

* Learn about FPGAs, development tools
and VHDL, start programming.

* Produce a simple application, that uses a
VGA driver to display graphics on a
computer monitor.

* Create a simple game.
e Create a more advanced game.
* Design some hardware.

A plan, available in Appendix B, with objectives

and milestones was created to give a rough
estimate of duration of each part of the project.

2 BACKGROUND

2.1 Field-Programmable Gate Arrays

FPGAs are modern programmable logic devices
that can be configured to perform any logic
operation.

An FPGA typically contains a matrix of
programmable elements, also known as,
Configurable Logic Blocks (CLBs). CLBs contain
Look-Up Tables (LUTs), that can be used as logic
or storage elements. The configuration data is
stored in the memory.

Spartan-3E series FPGAs, used in this project
contain the following structures, as described in

[1]:

* Configurable Logic Block - logic and
basic storage elements are implemented
using the Look-UP Tables (LUTSs).

* Input/Output Block (IOB) - control the
data flow between the I/O pins and
internal logic of the device. IVTTL and
LVCMOS logic standards are supported
among others.

* Block RAM - memory used for data
storage. Organized as 18kb dual-port
blocks.

» Digital clock manager block - provides
management for clock signals.

Xilinx versus Altera

There are two major manufacturers in the
programmable logic business — Xilinx and Altera.
Xilinx is a current market share leader, with Altera
being a close second.

The decision which one to choose should not be
based on the architectural differences of the two
technologies. There are many more important
aspects, such as device availability, overall price,
development tools, existence of Intellectual
Property (IP) cores and educational material and
so forth.

Xilinx Spartan-3E development boards were
readily available at the university and, therefore,
Xilinx technology was used for this project's
implementation.

FPGA BASED VGA DRIVER
AND ARCADE GAME

2.2 Hardware description languages

VHDL

“VHDL is a language for describing digital
electronic systems. It arose out of the United
States government's Very High Speed Integrated
Circuit (VHSIC) program. In the course of this
program, it became clear that there was a need for
a standard language for describing the structure
and function of Integrated Circuits (ICs). Hence
the VHSIC Hardware Description Language
(VHDL) was developed” (Ashenden, 1996) [2].

VHDL became an IEEE standard in 1987. Several
revisions have been done since then.

VHDL can be used not only to describe digital
hardware but also to create test benches for
testing the designs.

VHDL supports many built-in and user-defined
data types. Some of most often used are

* std logic (single bit)
 std logic vector (bit vector)
* numerical types such as integer
* arrays, enumerated lists, etc.

Unlike imperative programming languages, such
as C++, VHDL statements are concurrent (i.e. run
in parallel). Concurrency is very useful in HDLs, as
it resembles the way hardware works. Sequential
statements can be implemented using a special
construct called process.

Every VHDL design must have an entity and an
architecture. The Entity contains a declaration of
I/0 ports while the actual design code resides in
the architecture part.

Signals declared in the entity are referred to as
external and are usually tied to I/O pins on the
FPGA. The mapping of signals to pins is done in
the User Constraints File (UCF).

Internal signals are declared in the architecture
body and cannot be connected to the outside
world.

Digital systems theory

VHDL is a good example of practical application of
digital circuit theory. Many of the basic concepts,
such as gate and register-transfer level design,
combinational logic and finite state machines have
been used throughout the project.

Other HDLs

As with the FPGAs, there are two predominant
hardware description languages — VHDL and
Verilog.

And just like with FPGAs, HDL usage is more a
matter of preference. Capabilities are pretty much
equal. The difference lies in how the hardware is
described. Verilog is somewhat similar to C
programming language, whereas VHDL is based
on Ada.

According to Wakerly [3], it is best to “learn one
well and, only if necessary, tackle the other later”.

2.3 Development board

FIGURE 2.1: SPARTAN-3E BOARD

The development board used in this project is
shown in Figure 2.1. It uses a Spartan-3E series
FPGA (model XC3S500E) with the following
characteristics [1]:

* 500,000 system gates, making over ten
thousand equivalent logic cells.

* 20 RAM blocks totalling 360kb of memory.
* 20 dedicated multipliers.
* A maximum of 232 I/O pins.

The board has a 15-pin D-subminiature connector
to plug in a VGA monitor.

Also, an on-board 100-pin expansion port is used
to connect an adaptor board. Full list of features
can be found in the user guide [4].

10

FPGA BASED VGA DRIVER
AND ARCADE GAME

24 VGA

Hardware

VGA is an analogue video standard, that is mostly
used in personal computers. VGA can also refer to
a piece of display hardware developed by IBM
(Video Graphics Array) or a display mode, that
uses 640 x 480 pixels resolution.

VGA connector uses a total of 15 pins, but only 5
signals are needed for operation:

e HSYNC - horizontal synchronization
signal. This signal controls the horizontal
position of the active pixel

* VSYNC - vertical synchronization signal.
This signal controls vertical position of the
active pixel. VSYNC rate can also be
referred to as a refresh rate (i.e. number
of times per second the screen is redrawn)

¢ RED - red colour channel
* GREEN - green colour channel
¢ BLUE - blue colour channel

Other pins include ground, return paths and 12C
clock/data or are reserved [5].

HSYNC and VSYNC are TTL signals, so logic one is
represented by 5V and logic zero is represented by
oV [5].

RED, GREEN and BLUE signals are analogue. The
maximum voltage that can be used is 0.7V and
will result in full intensity of that colour [5].

Xilinx Spartan-3E board is only capable of
producing eight colours (3-bits) as a digital-to-
analogue converter (DAC) is not used. The board
uses 270Q resistors, which form a potential
divider with internal 75Q termination. This
divider scales the 3.3V signal from FPGA to
required 0.7V [4].

Timing

Pixels on the screen are drawn in sequence, one
by one. Rows are arranged top to bottom, and
columns go from left to right. The row and
column addresses are constantly incremented thus
changing the position of currently drawn pixel.
Synchronisation signals are used to tell the

monitor to return the pixel back to the first row
(VSYNC) or the first column (HSYNC).

Sequence and duration of these signals are
discussed below.

640 x 480

HSYNC

VSYNC
FIGURE 2.2: PARTS OF A SCREEN

Figure 2.2 shows parts that are required for an
operation of a standard monitor.

Visible part of the screen is shown as the white
area. It has a resolution of 640 by 480 pixels.

The black and grey borders denote parts of the
screen that are not visible, but required for
synchronization. With these parts, the total width
of the screen is 800 pixels, and the total height is
524 pixels. Below is the short description of each
part of the screen, followed by a table of
dimensions.

Active video. This is the visible part of the screen,
video output is enabled.

Front porch. When the trace reaches the end of
the visible part of the screen, the video output is
disabled. These areas are denoted as VPF (Vertical
Front Porch) and HPF (Horizontal Front Porch) in
Figure 2.2.

Sync pulse. In case of HSYNC, the trace goes back
to column zero. If pulse is VSYNC, the trace goes
back to row zero. This part is also known as the
retrace period.

Back porch. This is the part that goes before the
active video starts. These areas are denoted as
VBF (Vertical Back Porch) and HBF (Horizontal
Back Porch) in Figure 2.2.

Table 2.4.1 lists the dimensions for each part of
the screen. These numbers are only valid for
resolution of 640 x 480 and refresh rate of 60Hz.
Other modes are described in the source [6].

1

FPGA BASED VGA DRIVER
AND ARCADE GAME

TABLE 2.4.1: VGA TIMINGS

Active Front | Sync Back

video porch pulse porch
Horizontal = 640 16 96 48
Vertical 480 11 2 31

2.5 Nintendo controllers

The classic Nintendo Entertainment System (NES)
controller became a cultural icon among arcade
game lovers and geeks. It therefore, seemed like a
good idea to use these controllers as an input
device.

The controllers use an 8-bit static shift register
(4021B) to transmit user input as an 8-bit serial
data. There are eight buttons on the gamepad, so
each button has its own bit. Buttons and their
corresponding values are listed in Table 2.5.1
below.

TABLE 2.5.1: GAMEPAD OUTPUTS

Button Value

None TM111111

A 01111111

B 10111111

SELECT 11011111

START 11101111

up 11110111

DOWN 11111011

LEFT 11111101

RIGHT 11111110

Note that the signal is active-low. When two
buttons are pressed at the same time, two bits will
be set to zero.

It is worth mentioning that the controllers and the
development board cannot communicate directly
with each other due to different voltage levels
used. The FPGA can only go up to 3.3V (Low-
Voltage TTL or CMOS), while the controllers need
5V. For this purpose, an adaptor board was
designed and built. This is discussed in greater

detail in Chapter 7.

An equivalent schematic diagram of the controller
is shown in Appendix D.

2.6 Principles of game
implementation

Logic blocks

Main
VGA Graphics
— Sound rT I T—¢
I User Input Ohject || Object || Object
FIGURE 2.3: GAME LOGIC HIERARCHY

To make the code more manageable, it is a good
idea to separate the source into logic blocks.
Figure 2.3 shows one possible configuration of a
game project.

At the very top of the hierarchy, is the Main block.
Major logic parts are instantiated in this circuit.
Signals shared between VGA, Sound, User Input
and Graphics circuits all go through the main logic
block.

VGA synchronization logic provides information
about the pixel which is currently being drawn on
the screen. It also outputs synchronization signals
to the VGA port.

Sound circuit provides acoustic feedback to the
user. This logic depends on signals provided by the
graphics generation circuit.

User input logic is responsible for logging input
events and providing the graphics logic with
appropriate control signals.

At the bottom of the hierarchy, we have the
graphic objects. They take pixel coordinates and
control signals and, based on that information,
generate RGB pixel values.

Finally, graphics generation circuit, in the
middle of the diagram, can be thought of as a hub
connecting all the objects. It passes pixel
coordinates received from the VGA circuit, routes
the data, sends control signals and enables or

12

FPGA BASED VGA DRIVER
AND ARCADE GAME

disables the objects.

Objects

In the game, each graphic element is treated as an
object. The object has a source of pixel values,
position coordinates, dimensions, logic and so
forth.

The idea here is to provide another layer of logic
separation. Each object is responsible for its
graphical appearance, position on the screen,
movement etc.

A ball in the game of Pong, is an example of an
object. The graphical representation of the ball is
stored in the ROM, the object knows its current
location, and can update its coordinates to move
or bounce of the wall.

Object generates a pixel value, which is used by
graphics generation circuit to display the object on
the screen. The value of the pixel is deduced from
screen pixel coordinate. More on this in Chapter
3.3.

3 IMPLEMENTATION

31 VGA

Code

'l vga sync.vhd

The VHDL code for driving a VGA monitor is taken
from FPGA prototyping by VHDL examples, by Pong
P Chu [7].

It is one of the simplest parts in the project and, in
this case, there is not much to gain from writing a
custom implementation. This section will briefly
explain the operation of the VGA controller logic.
Comments in the code provide more detailed
explanation.

Three major components are needed for the
driver: a 25MHz clock, counters (for the vertical
and horizontal pixel coordinates) and constants
representing the timing values listed in Table
2.4.1.

The horizontal and vertical counters count to 799
and 523 respectively. These counters are updated
at the speed of the pixel clock — 25MHz in this
case.

During operation, the values in the two counters

are checked against the predefined constants.
SYNC signals are produced during the sync stage
(i.e. between the front porch and back porch).

The statement, therefore, can be described in
pseudo-code like this:

sync _pulse = 1 when
counter >= (display area +
front porch)
and
counter < (display area +
front porch +
sync_pulse)

Note that separate sync signals are used for
vertical and horizontal synchronisation. The
corresponding VHDL code can be found in the
vga_sync.vhd, lines 95 to 100.

The circuit also outputs x and y coordinates,
named px X and px_y, respectively. These
coordinates are provided as 10-bit vectors.

Results

To get a visual representation of the generated
synchronization signals, the outputs were
measured with an oscilloscope.

Channel 1 (top) in Figure 3.1 shows the HSYNC
trace. The frequency needed to traverse 524 lines
in 1/60™ of a second is about 31kHz.

The VSYNC signal is shown as channel 2.

Tek T Trig'd K Pos: 0.000s MEASLIRE
CH1
Pk-Pk
J 360
1 CH1
Freq
31.26kHz 7
CH2
Mane
+ CH2
Pk-Pk
2+ 360
CH2
Freq
?
CH1 200y CH2 2.00v 50,005 CH2 & 1.60v
23-Feb—10 2353 BA.63TEHz
FIGURE 3.1: VGA SIGNALS

Figure 3.2 shows a zoomed-out version of the
VSYNC trace. The HSYNC signal is left out, since
no detail can be seen due to much higher
frequency. Note the frequency of around 60Hz.

13

FPGA BASED VGA DRIVER
AND ARCADE GAME

t Pos: 0.000s MEASLIRE

CH1
PR-Pk
352

CH1

Tek ..

1+ ‘ ‘

i Trig'd
+

Freq
S36THz?
+
| ‘ CH2 Off
None

CH2 Off
Pr—Pk

CH2 0ff
Freq

CH1 7 160
53.6376Hz

CH1 2.00% 1 10.0ms

23-Feb—10 2355
FIGURE 3.2: VSYNC SIGNAL

3.2 NES controller interface

Code

controller.vhd

The purpose of the driver is to provide control
signals for game pads, as well as read the data
from them.

Controllers need external clock and latch signals.
The clock frequency should not, under normal
conditions, exceed 1.5MHz [8].

The latch signal must be eight times slower than
the CLK in order to get all eight bits shifted out.
When this signal is high, parallel data is loaded
into the registers, when it is low, bits are shifted
out.

Latch signal frequency was chosen to be 100Hz.
This type of application does not require a very
fast sample rate, so 100 samples per second
seemed reasonable. Clock signal, therefore,
needed to be 800Hz. This is much lower than the
maximum given in the datasheet.

The CLK and latch signals are derived from the
master counter, which is running at four times the
CLK speed (3.2kHz). This is done so that the
sampling point can be chosen with greater
accuracy.

Figure 3.3 shows a part of simulated operation of
the interface. Three vertical lines show the points
at which data is sampled (master counter value is
changing from zero to one). This point was
chosen, as it is in the middle of high state of CLK
signal (shown as clk out in the image) and,
therefore, the voltages are stable.

e

|EI1DEIMD%1EEEEED%1ﬁEﬁimD%1ﬂgﬂlm&
L '

..

FIGURE 3.3: CONTROLLER INTERFACE TIMING
DIAGRAM

The latch (ps_counter in the image) value is also
used to assign the received value to the right bit in
the data byte.

When all bits have been received, the data is made
available as an 8-bit logic vector.

Results

Figure 3.4 shows the waveforms captured by an
oscilloscope. Channel 1 shows CLK and channel 2
shows latch signal.

t Pos: 0.000s MEASLIRE

CH1
Pk-Pk

T £

Mone
CH1 200y

Tek A 7] Tng’i

; CH2
: Pk—Pk
RRPUR ¥
| CH2

Freq
100,0Hz 7

CH2 7 1.63Y
33.3333Hz

| I

CH2 2004 t 250ms

23-Feb—10 22:53
FIGURE 3.4: CLK AND P/S SIGNALS

Note the frequencies of 800Hz and 100Hz.

The output signals are inverted to match the
operation of the adaptor board (described in
Chapter 7).

3.3 Graphics

Section Principles of game implementation in
Chapter 2, gave a brief introduction into the
structure of a game. This chapter takes a deeper
look into objects and graphics generation.

14

FPGA BASED VGA DRIVER
AND ARCADE GAME

Storing images

The graphics generation circuit gets a pixel
coordinate from the VGA driver. Based on that
coordinate, it generates a colour value for that
pixel and outputs it to the RGB port.

For more complex graphics, an image for example,
pixel values have to be stored in memory. One
simple way of doing this, is to use the internal
block RAM.

For storage of a simple monochrome image, a
two-dimensional array is sufficient. Array rows
represent image rows, and array indices represent
individual pixels. In VHDL, this array can be
described as follows:

type rom type is array(0 to 1) of
std_logic_vector(0 to 3);

constant SQUARES:
(

rom_type :=

||1010||)
"9101"
);

This array defines a four-by-two pixel image like
this: Wy, Note that one denotes the foreground
(black) and zero denotes the background (white).

Even though, a 3-bit RGB scheme is used, we only
need a single bit to describe monochrome images
(same bit is used for Red, Green and Blue
channels).

For simple cases, the synthesizer will infer a
correct type of RAM based on the structure of the
code. No special code to define RAM options was
used in this project.

Getting the pixels

Row and pixel addresses are derived from pixel
coordinates. Lets do a simple task of displaying an
image on the screen.

Figure 3.5 below shows ball graphics used in the
Pong game. We want this image to appear in the
top-left corner of the screen.

FIGURE 3.5: BALL IMAGE

The size of the example image is 16 x 16 pixels,
therefore, we need the address to be 4-bits wide in
order to be able to access each row and column.

The first pixel with coordinate (0, 0) is located at
the top-left corner. Likewise, the last pixel is
located at the bottom-right corner.

To begin with, we need to define the boundaries
of the image. In our case, it is 16x16 square:

rgb <= img data when px x < 16 and
px y < 16 else
II111II ;

So when the pixel coordinates are less than 16,
image data is sent to RGB output. Otherwise,
white colour is used as a background.

Now we need to set the image data. To do this, we
need to derive the row and column addresses.
Because the screen pixel coordinates correspond
directly to the image pixel coordinates, it is
sufficient to just take four least significant bits
(LSBs) of the pixel coordinates provided by the
VGA driver.

row addr <= px y(3 downto 0);
col addr <= px x(3 downto 0);

pixel <= pixel data(col addr);

img data <= "000" when pixel = '1'
else "111";

The ROM instance (not shown here) automatically
takes the row address and outputs the appropriate
row as a pixel data vector. The active pixel is
then retrieved from this vector.

Lastly, single bit is converted to three bits for
output at the RGB port.

To keep the example as simple as possible, ROM
instantiation and data type conversions are not

15

FPGA BASED VGA DRIVER
AND ARCADE GAME

shown here. Reader should refer to code listing
for full details. See the next section for a pointer.

Moving images

In order to be able to move images around the
screen, we need to have vectors defining the
position of an object. These will usually store x
and y coordinates of the top-left corner of that
image.

When the object is offset, we need a way to relate
screen pixel coordinate to image pixel position. In
Figure 3.6, we can see that, for example, when
screen pixel is at (3, 3), corresponding image pixel
is (0, 0).

01 2 3 4 5 6 7T 8 9

=] o W ok W M = O

FIGURE 3.6: IMAGE ADDRESSING

The correct image pixel address is produced by
simply subtracting the top coordinate of the ball
from the current position of the screen pixel.

'y Plong — graphics.vhd, line 360

row addr <= px _y(3 downto 0) -
ball top y(3 downto 0);

col addr <= px x(3 downto 0) -
ball top x(3 downto 0);

The code that enables the ball has to be updated
as well.

rgb <= img data when
(px_x >= ball top x and
px X < ball top x + BALL SIZE and
px_y >= ball top y and
px y < ball top y + BALL SIZE) else
“111",

Now whenever we change the top coordinate, the
image will change its position on the screen. If the

coordinates are updated in a continuous manner,
a motion will be created.

Colour image storage

‘g FPGalaxy - alien 1 1 rom.vhd

A different approach is needed to implement the
storage of colour images. Since there are now
three bits per pixel, array structure used before is
not suitable.

The first challenge is: how to define a 3D array in
VHDL? Readers, with experience in lower-level
programming, may know the answer already — an
array of arrays!

To begin with, we define a two-dimensional array
type as before, and call it rgb_array:

type rgb array is array(0 to 3) of
std_logic_vector(2 downto 0);

This type will be used to describe rows of an
image. There will be 4 pixels per row, and each
pixel will be defined by 3-bit vector.

In the next step, we want to combine these row
arrays to make an image. Structure definition is
quite similar, but we use the type defined above
instead of std logic vector:

type rom type is array(0 to 1) of
rgb _array;

Next, a constant with the pixel data is defined:

constant SQUARES 2: rom type :=

(
(uooou’ "001", u010u’ u011u)’
(ulOOu’ "101", "11@", "111")

);

This image will show all eight colours that can be
generated using 3-bit colour space.

Lastly, some updates to addressing are needed. In
the monochrome image example, a whole row
was made available at the output of the ROM. In
the colour mode, the row type is an array, so it is
better to return a value of a single pixel instead.

For this purpose, two addresses (row and column)
have to be provided to the ROM. These addresses
are joined together, so that externally the ROM
looks the same.

To access each row of the example image, a single
bit is sufficient. Likewise, two bits will cover all
four columns. These addresses add up to a 3-bit

16

FPGA BASED VGA DRIVER
AND ARCADE GAME

wide vector, which can be used like this:

rgb _row <= SQUARES 2(addr(2));
data <= rgb_row(addr(l downto 0));

3.4 Text generation

Often-times, games need to convey some textual
information to the user. This chapter will describe
the process of text generation in VGA applications.

Font

codepage.vhd

To begin with, a typeface has to be chosen. The
font, used by the two games, was borrowed from
Uzebox Project [9] as it resembles the typeface
used by many old arcade games. The source
image is shown in Figure 3.7.

FIGU RE 3.7: ARCADE TYPEFACE

When a suitable font is chosen, it has to be
converted to a code page or, to say simply, a ROM.

The size of each symbol is 8 x 8 pixels, and there
are 64 symbols in total. This results in 512 rows
and 8 columns, or 4k bits of data in a ROM.

Entering this information by hand would be
tedious and time-consuming. A simple Python
script was written for this purpose and is provided
in Appendix E.

The ROM is no different from that described in
Chapter 3.3. This is how letter A looks after
conversion.

"00111000", -- #HitH
"01101100", -- ## ##
"11000110", -- #4# #H#
"11000110", -- ## ##
"11111110", -- ##HA#HA
"11000110", -- ## ##
"11000110", -- ## ##
"00000000", --

Grid

Arcade - menu.vhd

As the font has been chosen and the code page
generated, we can now talk about placing the text
on to the screen.

The easy way is to treat each letter as a tile. Our
tiles are 8x8 pixels each, which means that
80 x 60 letter matrix can fit on a 640 x 480
resolution screen.

Each character has its own address within the
ROM. The address of the first symbol, a space, is
0. The address of the second symbol, an
exclamation mark, is 8 and so on. These
addresses are used to define text.

For large amounts of text, a ROM storage is
appropriate, but a simple multiplexer is sufficient
when only a few letters are needed.

Addressing is very simple, provided the characters
are placed strictly on the grid:

* To get a row address, we take the character
address and add three lower bits of px_y
(the screen pixel coordinate) to it.

* Three lower bits of px_x will select the
right pixel in the row (i.e. the column
address).

If text is moving or otherwise offset, a proper
subtraction is needed, as described in Chapter 3.3.

Also, an additional logic may be required to select
the character address if ROM structure is used to
store the text.

3.5 Binary to BCD conversion

In order to display multi-digit numbers as a text, a
binary-to-BCD (Binary Coded Decimal) converter
is needed. This section will go through the theory
and implementation of such converter.

Theory

Binary numbers can be converted to BCD using a
“Shift and add 3” algorithm, described in page
147 of source [7].

1. Bits are shifted to the left, so that the most
significant bit (MSB) of a binary number
becomes the least significant bit (LSB) of
BCDO digit, then the MSB of BCDO digit
becomes the LSB of BCD1 digit and so on.

2. After each shift, all BCD registers are
checked; if value in the register is greater
than four, three is added to that register.

3. Go to 1 until all bits have been shifted.

17

FPGA BASED VGA DRIVER
AND ARCADE GAME

VHDL implementation

' FPGalaxy - bin2bcd.vhd

The conversion is controlled by a Finite State
Machine with Datapath (FSMD). It has three
states: start, shift and done.

If you are unfamiliar with digital circuit theory,
think of FSM as a flowchart. See Figure 3.8 for
an example.

Start state clears all the registers and the shift
counter and preloads a new binary number.

Shift state checks the number of bits shifted, if all
the bits have been shifted, the state is changed to
done, otherwise, shift operation is performed
again. Addition is done using concurrent
statements outside of the FSMD.

Done state does not do anything explicitly. It,
however, gives the output logic a signal that the
conversion has been completed and the BCD digits
can be made available at the output.

3.6 Sound

To make the games more complete, an audio
feedback function was added. The sound is
produced by a piezoelectric transducer which is
driven directly by the FPGA.

The generation logic is divided in to three parts:

* Frequency generator

* Sound ROM
* Player
Frequency generator

sounds.vhd

The frequency generator is a low-level logic, that
creates a square wave. It can produce different
frequencies and duty cycles depending on the
parameter values provided.

An internal counter is running at 50MHz. When
the value of the counter matches the value of the
period input, the counter will reset.

The duty cycle determines how long the output
stays high during the period. The pulse width can
be set as a fraction of the period by setting the

volume input.

The output can be switched on or off by setting
the enable signal.

Sound ROM

In order to create more complex sounds, a variety
of frequencies, amplitudes and durations is
needed. A ROM is used to store all this data.

To keep things simple, a representation of data is
stored, rather than the actual data. The ROM
contains a number of 9-bit vectors, which are later
mapped to actual values.

Pitch, volume and duration are each allocated 3
bits, resulting in 7 different values (zeros are used
for termination).

Player

player.vhd

A high-level logic, which takes data from sound
ROM, transforms it and feeds the result to the
frequency generator, is called a player.

The FSMD, shown in Figure 3.8, is the main
control structure of the player logic.

This FSMD has two states — Off and Playing. When
start signal is set, the FSMD state changes to
Playing.

The Playing state serves two purposes: it checks
for the end of the tune and also sets the address of
the next note (datapath).

Playing end of tune?

change note?

note_addr + 1

Output (enable signal) only depends on the state,
and can be said to use the Moore model.

FIGURE 3.8: SOUND CONTROL FSMD

en <= '1l' when state = playing else

IOI;

18

FPGA BASED VGA DRIVER
AND ARCADE GAME

Table 3.6.1 summarises operation of multiplexers
used to transform the data from the sound ROM
to appropriate values. The Bits column represents
the data in the ROM, other columns show the
corresponding output from the multiplexer.

Figure 4.1 shows the file structure of the Pong
game. The structure follows the pattern described
in Chapter 2.6, but the objects (ball and paddles)
are not separated from the main graphics logic.
This resulted in a large all-in-one file.

4.2 Graphics

Main logic

TABLE 3.6.1
Bits Frequency Duration | Duty cycle
000 N/A
001 110 Hz 1/64 s 50 %
010 220 Hz 1/32s 25 %
011 440 Hz 1716 s 12.5%
100 880 Hz 1/8s 6.25 %
101 1760 Hz 1/4s 3.12%
110 3520 Hz 1/2s 1.56 %
111 7040 Hz 1s 0.78 %

The set of values is far from comprehensive, but is
sufficient for purposes of this project.

4 PONG

4.1 Structure

Development of the Pong game was a learning
exercise in its way. There was not much planning
involved and the main goal was to get it working
and to grasp the basics game development.

- ;ﬁ; plong
i 'y wvoa_sync_unit
El- "wg| Graphics_unit
- g ball_unit
- g Bar_unit
- g fONE_unit

'y MES_controllerl
- '] MES_controller2
- "] plong.ucf
E vga.ucf
- %] sounds.ucf
- %] controller.ucf

FIGURE 4.1: PONG GAME FILE STRUCTURE

" Plong - graphics.vhd

The main graphics generation logic consists of two
noteworthy parts: a game control FSMD and a
pixel routing logic.

The pixel routing is done with a conditional
sentence. It basically defines object priorities,
when two or more objects are at the same
location. For example: the ball will go over the
middle line and the score text, but will go under a
paddle in case of the player missing the ball.
Background has the lowest priority.

The control FSMD is shown in Figure 4.2. It is
responsible for keeping the scores, enabling or
disabling motion of the ball and announcing the
winner.

playing

start

waiting

'

start
pressed

ball
missed

start
pressed

7 points
reached

FIGURE 4.2: PONG ASMD CHART

Start state is used to reset the scores before the
game begins.

Waiting state disables movement of the ball,
changes state to game over, if one of the players
has reached the seven-point limit, or waits for
user input otherwise.

Playing state enables the ball. When the ball is
missed, score count is updated and the state

19

FPGA BASED VGA DRIVER
AND ARCADE GAME

changes to waiting.

Winner is announced when the FSMD state
changes to Game over.

Paddle logic

This Pong implementation is a two-player game,
so two paddles are needed. Dimensions and
graphics are the same for both bars, but they have
separate position coordinates.

Since the two paddles cannot appear in the same
location, it was possible to use shared enable,
ROM address, data and pixel signals.

Paddle control logic is fairly simple — it responds
to user input by increasing or decreasing the top
coordinate of each bar. When a paddle is at the
top or bottom, no further movement is allowed in
that direction.

Ball logic

Ball logic is probably the most complex part of the
game. One has to keep track of ball position,
increase the velocity, enable or disable the motion
and so forth.

One of the most important features of the game is
increasing the velocity of the ball. This allows a
player to get used to controlling paddles and
ensures that the game will come to an end at
some point.

The acceleration of the ball is controlled by a
counter. The counter counts to some value, and
when it resets, the ball position will be updated.
By reducing the value of the counter limit, ball
velocity can be increased.

The counter limit is updated after a certain
number of bounces from a paddle. There are only
four levels of velocity, but it proved to be sufficient
to make players concentrate more at greater
speeds.

One issue with this acceleration approach is that
sometimes the ball coordinate is updated more
often than the screen itself. This results in small
distortion of the ball (see Chapter 8), but is hardly
noticeable during the game.

A separate process is dedicated to controlling the
direction of the ball. Figure 4.3 illustrates the
principles of ball movement.

FIGURE 4.3: CHANGES IN TRAJECTORY

The part a) of Figure 4.3 shows the ball going
down and to the right. When the ball bounces, it
starts going up and to the right. The bold arrow
denotes the direction that does not change after
the bounce.

Likewise, in the part b) the constant direction is
downward, and the horizontal direction changes
from right to left.

Using this principle, it is easy to implement a
vertical direction control:

if ball y = 0 then
ball v dir next <= '1';
elsif ball y = SCREEN HEIGHT -
BALL SIZE then
ball v dir next <= '0';
end if;

A horizontal direction control requires checking
whether a paddle is in a right position, but the
principle stays the same.

The position is updated according to the direction
of the ball and is done like this:

if ball h dir = '1' then
ball x next <= ball x + 1;

else
ball x next <= ball x - 1;
end if;
if ball v dir = '1' then
ball y next <= ball y + 1;
else
ball y next <= ball y - 1;
end if;

As you can see, the x and y coordinates are
updated independently.

Scores

The pong game uses a text generation logic,

20

FPGA BASED VGA DRIVER
AND ARCADE GAME

described in Chapter 3.4, to render points and a
game-over message.

The score font address is acquired using this
formula:

addr = 128 + (score_value * 8)

Offset of 128 is needed because numbers start at
this address in the memory. Multiplication by 8 is
used to get the right digit (characters are 8 x 8
pixels in size).

The score value was deliberately limited to 7 for
two reasons:

1. Simple implementation, no need for a
binary-to-BCD converter.

2. Duration of a match is well balanced.
4.3 Sounds & User input

Sounds

Two types of sounds are used in this Pong game. A
short, high pitch sound is played when a ball
bounces, and a longer, low pitch sound is played
when the ball is missed.

Initially, only the square wave generator was used
to make these sounds, so only single frequency
was used. The tones remained after the sound
logic was updated.

User input

Initially, four on-board tactile switches were used
to control the movement of paddles. At the end of
the project development, the game was updated
to make use of the Nintendo controllers.

There are three buttons, that the game uses: UB
DOWN and START. The purpose of these buttons
should be obvious.

Since the functionality is very basic, there is no
need for switch debouncing logic.

5 SPACE SHOOTER

The second game, a space shooter, was developed
as a complement to the Pong game.

Space shooter is more complex than Pong — visual
appeal improved by use of colour and animated
graphics, enhanced sound logic is able to play
simple tunes, proper game pads used to control
the game.

i:tni:t fpgalaxy

: vaa

- g alienl

- g alien2

- g alien3

- 'y spaceship
i 'y missile

'y explosion
'y level_display
- |y score_display
Bl [y soundl

G- [y sound2

- '] MES_contraoller
- '] sounds.ucf

"t voa.ucf

"t main.ucf

"t controller.ucf

FIGURE 5.1: FPGALAXY FILE STRUCTURE

o

=
=]
=
ol
=
=
H
(Pl

-

While being more more complex, the game is less
complicated. More work has been done on the
design side — the file structure was improved, each
object is logically separated from all other objects.
In fact, it would be possible to take the code that
generates a spaceship, and put it into the Pong
game with a minimum effort.

Figure 5.1 shows the improved file structure. As
can be seen, graphics generation circuit now has
many child files (objects). To conserve the space,
files belonging to objects (e.g. ROM files) are not
shown in the figure. Full file tree can be found in
the source code listing.

5.1 Gameplay

The point of the game is to destroy the alien
invaders. A player controls a spaceship located at
the bottom of the screen; it can more sideways,
but not up or down. The spaceship is able to shoot
one missile at a time. When the missile hits the
target or leaves the screen, the player can shoot
another one.

The aliens are located at the top of the screen.
There are three rows, with eight aliens in a row.
Level 1 aliens hover in front (bottom row), they
are weak and need only one hit to be destroyed.
Level 2 aliens reside in the middle, they are
stronger than Level 1, and need two shots to get
killed. At the end, there are Level 3 aliens. It takes
three hits to destroy a Level 3 alien. Moreover,
they can turn invisible and avoid being hit by a
missile.

When all the aliens are destroyed, another fleet

21

FPGA BASED VGA DRIVER
AND ARCADE GAME

shows up and the game continues.

5.2 Graphics

The two major improvements over the first game
are use of colour (although limited to only 3 bits)
and object animation. Word “animation” here
means that the aliens are not only moving around
the screen, but also change their shape.

Main logic

' FPGalaxy - graphics.vhd

As most of the logic has been moved to other files,
graphics generation circuit has somewhat less
work to do than in the case of the Pong game. The
logic is responsible for object control signals and
interfacing with the VGA port.

The alien position coordinates are generated in
the main file. The individual alien generators use
signals generated by a simple FSMD.

The score and level information is also updated
here. Corresponding logic files are dedicated to
displaying that information on the screen.

Aliens
All the graphics were originally designed for the

purpose of this project. Figure 5.2 shows the levels
and states of the aliens.

FIGURE 5.2: ALIEN GRAPHICS

The frame size was chosen to be 32 x 32 pixels.
The width of all aliens had to be the same, in
order to make it impossible to destroy higher level
aliens first. There is enough room for a missile to
fly between two aliens.

These images were converted to ROM files for use
by an alien generator logic. The logic takes master
coordinate and generates pixel values based on
that and some other signals.

‘il FPGalaxy - alien generator.vhd

Alien generation logic constantly checks the
missile coordinates. When the missile is within the
alien area, the logic checks which alien is being
attacked and whether that alien is still alive. In
case of destruction, appropriate signals are
generated for use by other logic parts (such as
explosion and score counter) and the alien is
disabled. If alien was already destroyed, nothing
happens and missile continues its journey.

An animation is created by changing the source of
the alien graphics. The duration of each frame is
controlled by a counter.

Spaceship and missile

FPGalaxy - spaceship.vhd
FPGalaxy - missile.vhd

The spaceship logic is very simple. Apart from
pixel generation, it only has to react to user input
to move sideways and output its centre coordinate
for use by the missile generation circuit.

The missile generation logic also contains missile
graphics (since the frame size is only 4 x 4 pixels).

When a launch button is pressed, the logic records
the position of the spaceship and uses that value
as its horizontal coordinate. Vertical coordinate is
then updated at a certain frequency, which
depends on the internal counter. The missile is
disabled when it leaves the visible part of the
screen or destruction signal is generated.

Explosion logic

FIGURE 5.3: COLOUR MASKING

A more interesting design solution is implemented
in the explosion generation logic. There is only a
single frame in the ROM file and yet the explosion
is animated in the game.

22

FPGA BASED VGA DRIVER
AND ARCADE GAME

"] FPGalaxy - explosion.vhd

The explosion image uses three colours: red at the
centre, yellow in the middle and white on the
outside. Top row in Figure 5.3 shows location of
red, yellow and white pixels. By masking certain
colours, three frames can be created, as shown in
the bottom row. When these frames are shown
one after another, the effect of animation is
created.

The animation is controlled by a counter and a
finite state machine. The pixel output depends on
the state of that FSM.

Score and level display

FPGalaxy - score _info.vhd
FPGalaxy - level info.vhd

The score and level display generation circuits are
also rather simple. They generate some text and
use binary-to-BCD (see Chapter 3.5) converter for
the numbers.

6 COMPLETING THE PROJECT

6.1 Game selection menu

Arcade - menu.vhd

When both games were finished, it seemed to be a
good idea to combine the two games into a single
application and provide a nice menu to select a
game.

The menu has to display some text, respond to the
user input by changing the selection and provide
an output signal, that indicates the current choice.

There are four pieces of text to be generated on
the screen:

e title (text: 2 IN 1)

e game 1 (text: PLONG)

* game 2 (text: FPGALAXY)
e credits (author and date)

The title text is about eight times larger than
normal letters, but is generated from the same
source. Font scaling is very easy to implement and
does not require any additional code.

Remember that pixel coordinates are stored in 10-
bit vectors px_x and px_y. If we ignored the least
significant bit, it would effectively reduce the
resolution by 50%, or in other words, double the
pixel size!

When generating the title text, three LSBs are
discarded, making the pixel eight times as large.

6.2 Combining the applications

Arcade - main.vhd

The next step is to combine all three applications
together. Menu is the default one, and its RGB
stream is selected after reset. When SELECT
button is pressed (i.e. game is chosen), RGB
output has to be fed from a game stream.

Since the games run in parallel, a way to disable
on of them is needed. This was done by
enabling/disabling user input for each game.
When there is no input from controllers, a game
will effectively be paused.

Then follows a standard procedure of component
instantiation, definition of signals etc. This sort of
combination may not be the most effective, but is
definitely simple and highlights the benefits of
modular design.

7 ADAPTOR BOARD

After the decision to use NES controllers was
made, a couple of issues had to be resolved:

e how to connect Nintendo controllers to
Xilinx development board and

* how to make two devices, using different
voltage levels, communicate with each
other?

The obvious solution was to design another piece
of hardware that will have proper connectors to fit
the development board and controllers and also
host level conversion circuitry.

Extra functionality, such as reset button and
speaker, was added to make better use of available
board space. The list of parts can be found in
Appendix B.

7.1 Reverse engineering the
controllers

Some research into the internal construction of

23

FPGA BASED VGA DRIVER
AND ARCADE GAME

Nintendo controllers was done beforehand, in
order to confirm the fitness for the purpose. After
the game pads were acquired a proper schematic
diagram of the internal construction had to be
done.

At the heart of the device is a 4021B 8-bit static
shift register used for parallel-to-serial data
conversion. Each of eight parallel inputs has a
button assigned to it. There are also power, clock,
latch and serial data lines. The connections were
found using a multimeter in a continuity test
mode. Equivalent schematic diagram can be found
in Appendix D.

7.2 TTL/ CMOS level conversion

The shift register inside the controller operates at
TTL logic levels — OV to 5V. The FPGA, however,
uses low-voltage TTL/CMOS thresholds (OV to
3.3V).

While 3.3V from FPGA could be interpreted as a
logic high by TTL circuitry, 5V from the controller
could possibly damage the FPGA. In order to stay
on the safe side, some sort of level conversion had
to be implemented.

There are many ways to combine TTL and CMOS
circuits. Approach used in this project is described
below.

FPGA to Shift register

>
in
=

L 40218
W

S/

AT

EN— s

FIGURE 7.1: SWITCH CONFIGURATION

The FPGA has to drive two lines — CLK and latch.
Inside the controller, these lines are pulled high
with pull-up resistors, so the signals are active-
low.

A 74HCT4600 analogue switch is used to pull the
line down: input is connected to GND and the
enable signal is controlled by the FPGA. The state
of the signal is controlled by enabling and
disabling the switch.

Shift register to FPGA

A 74LCX125 low-voltage buffer with 5V tolerant
inputs was chosen to transform 5V output from a
controller to 3.3V, This part is specifically made to
interface 5V systems to 3V systems.

The data lines are not pulled high inside the game
pads, so a 10k pull-up resistor was used on the
board.

7.3 Board design

Schematic capture

Schematic capture was done using Easy-PC EDA
software. The resulting schematic diagram is
shown in Appendix F.

On the left there is a 100-pin Hirose FX-2
connector, which plugs into the expansion port on
Xilinx development board.

The FPGA I/O pins were chosen to make PCB
design easier by reducing the length of tracks.

A piezoelectric transducer and a RESET switch are
located at the top, near the FX-2 connector.

On the right side there are level conversion chips
and on the left — NES controller ports.

Both Nintendo and Hirose connector design files
were custom made. Design files for FX-2
connector were kindly provided by Philip Watson.

PCB layout design

The circuit is rather simple, so there is not much
to say about PCB design itself. Some practices and
design considerations may be worth mentioning,
though:

* Two-layer design, vias done using special
pins.

* FPGA pins chosen to achieve minimum
track length.

* Thicker tracks and “teardrops” used for
power (3.3V and 5V) lines.

» Top and bottom ground planes connected
in multiple points by “stitching” vias.

The top and bottom layer masks are shown in
Appendix G.

Manufacture

The board was milled using a Computer

24

FPGA BASED VGA DRIVER
AND ARCADE GAME

Numerically Controlled (CNC) machine at
university. Soldering was done by hand, using a
hot air pencil for SMD components and soldering
iron for through-hole parts.

The case was machined from a sheet of clear
plastic with holes for controller ports and reset
switch. As the switch is located on the board,
extension rod was glued to improve accessibility.

8 DISCUSSION

8.1 Issues

During the course of the project, there has been a
number of issues with various things. Some
problems were minor, others required a bit more
effort to solve. This chapter discusses issues that
are most noteworthy.

Pong ball acceleration

In one of the final stages of development of the
Pong game, a ball acceleration feature was being
implemented. Two ways were considered to do it:
increase step size or increase position update rate.

The step size increase means that instead of
moving 1 pixel every time the position is updated,
the ball would move 2, 3, 4, etc. pixels. This
approach means that the ball position has to be
calculated upfront or the ball may jump out of the
visible portion of the screen.

A simple way to make the ball go faster is to
increase the update rate. This approach does not
require any extra logic, but due to limitations of
VGA mode, introduces a slight graphical distortion
of the ball.

The screen is updated sixty times per second. In
order for graphics to be displayed properly, the
image must not change while the pixels are being
drawn on the screen. In other words, the refresh
rate has to be faster than the image update rate.
When ball position update rate is increased, this
rule is violated and a slight distortion occurs.

Figure 8.1 shows a an example distortion that
could be perceived when the ball moves too fast
towards the bottom-left corner of the screen. Note
how the ball is divided into four parts.

@

FIGURE 8.1: BALL DISTORTION

While the distortion can be spotted, it is not
constant and so does not affect the game in any
significant way.

Synchronisation problems

Tek i"‘

E &

|

e e

e
=4

=

o

caail b,

Ceuping
e ol e
pmr“mr) B B UFA L
1-Fod- 10 1629 TR
n e "M Pos: LS TRIGLER
! | 10
. : =
3 - ‘ ——
| : oxce
higa:

-
=

| "
¢ TR S s
T T Y BT W

r} 0 tt::- b7 i HM“l‘:'l

FIGURE 8.2: WAVEFORMS GO-OUT OF SYNC

While implementing control of a spaceship, a
bizarre behaviour was noted. From time to time,
the spaceship would stop responding to any user
input for a few seconds. Other functions, such as
missile launch worked fine, so the controller
interface problems were not considered.

Initial suspect was the enable signal, that was
supposed to limit speed of the spaceship. After
some “quick fixes” failed to solve the problem,
signals were made available at the output for

25

FPGA BASED VGA DRIVER
AND ARCADE GAME

inspection with an oscilloscope.

Figure 8.2 shows two screen shots taken at
different times. Top trace shows the data from the
controller. Bottom trace is the enable signal. Note
that the width of the enable signal was increased
in order to be viewed on the oscilloscope. It is
clear, that the the two signals drift in and out of
sync.

It was then, that it became clear, that the problem
is really within the controller interface. User input
was not supposed to be retained between samples.
This caused malfunction and was the reason why
the enable signal had to be added in the first
place. When the problem was fixed, there was no
need to have the enable signal any more and
spaceship control started to work properly.

If there was still an need to limit the speed of the
spaceship, a simple counter could be used to
divide the sample rate to appropriate value.

Adaptor board

This one can be written-off to silly mistakes. After
the initial circuit was designed, time was not
taken to double-check that the functionality of the
adaptor matches the functionality of Nintendo
game pads.

The clock and latch signals were internally pulled
up, and, therefore, were active-low. It was falsely
assumed, that the line was active-high and the
switch in Figure 7.1 was tied to 5V instead of
GND. Temporary fix was to cut the track and
solder some wire between the pad and the ground
plane.

The second mistake, was to omit the pull-up
resistors on the data lines. While the absence of
these resistors did not affect the operation of a
controller, behaviour was undefined when a
gamepad was not plugged in.

The second revision of the board was made to fix
the remaining problems.

Binary-to-BCD conversion

While implementing the “Shift and add 3”
algorithm, described in Chapter 3.5, a wrong
condition was chosen for stopping the conversion.

When the bits were shifted to the left, a '0' was
appended in the place of the old LSB. This
implied, that the conversion should be finished
when all bits were zero. Such a condition meant
that numbers like 100000, would not be

converted properly, since all bits would be zero
after just one shift.

The problem could not be identified by just
inspecting the code, so the Modelsim simulation
software was used to track the bug down.

Step-by-step inspection made it trivial to notice
the early termination of the conversion. A counter
was added to track the number of bits shifted and
the problem was gone.

8.2 Further work

While most of the set objectives have been
achieved, there 1is still room for further
improvement and experimentation.

If more time was given to work on this project, a
number of different goals could be considered.

One possible approach to systems development on
an FPGA is to use a soft-core microprocessor along
with VHDL logic. Xilinx offers an 8-bit RISC
microcontroller — PicoBlaze.

It would be possible to use a VHDL based VGA
driver while implementing game logic on a soft-
core processor. This could potentially give more
flexibility and reduce the development time.

Another possibility is to focus more on improving
the game features, or even develop an emulator
able to run more than a couple of games.

9 CONCLUSION

The project was completed successfully — both
aims and set objectives have been achieved.

The project was started by learning the basics of
FPGA development, going on to produce simple
applications, before moving on to work with the
VGA graphics and game development.

A number of modules have been developed, to
give extra functionality to the games. These
include sound and text generation logic, a data
converter and an interface for game pads.

An adaptor board, connecting the game pads to
the development board, was designed and built.
As well as providing a nice integration between
two very different devices, this task gave an
opportunity to work on circuit and PCB design.

The project provided valuable experience in FPGA
based system design and was really enjoyable.

26

References

1.

Xilinx, Inc., 2008. Xilinx Spartan-3E FPGA Family Datasheet. Available at:
http://www xilinx.com/support/documentation/data_sheets/ds312.pdf [Accessed 1 March 2010]

. Ashenden, Peter J., 1996. The Designers Guide to VHDL. San Francisco: Morgan Kaufmann

Publishers, Inc.

3. Wakerly, John F., 2006. Digital Design: principles and practices. New Jersey: Pearson Education, Inc.

Xilinx, Inc., 2008. Xilinx Spartan-3E FPGA Starter Kit User Guide. Available at:
http://www xilinx.com/support/documentation/boards_and_kits/ug230.pdf [Accessed 26 February
2010]

. Myers, Robert L., 2002. Display interfaces: fundamentals and standards. Chichester: John Wiley and

Sons

http://martin.hinner.info/vga/timing.html [Accessed 27 February 2010]

7. Chuy, Pong P., 2008. FPGA prototyping by VHDL examples. New Jersey: John Wiley & Sons

8. ON Semiconductor, 2005. MC14021B: 8-Bit Static Shift Register. Available at:

http://www.onsemi.com/PowerSolutions/product.do?id=MC14021BCP [Accessed 9 March 2010]

http://code.google.com/p/uzebox/ [Accessed 26 March 2010]

Bibliography

10. Holdsworth, Brian., Woods, Clive., 2002. Digital Logic Design. Newnes

11.Short, Kenneth L., 2008. VHDL for Engineers. Prentice Hall

APPENDIX A

Initial technical proposal

Project brief

Project Title: An FPGA Based VGA Driver and Arcade Game
Armandas Jarusauskas
Superisor: Dr Ahmet Aydin

AASP1

Build a simple arcade game, using an FPGA development board. The project will involve exploring the
capabilities of the board, and FPGAs in general, before moving on to develop a custom made arcade
game. The project will involve the use of a Xilinx Spartan-3E development board and will be based
around the use of VHDL as a tool to describe and implement digital hardware designs onto the
development board.

The following objectives would form the bulk of the project
* To complete and fully understand the capabilities of the development board

* To implement a VGA interface module capable of displaying visual information on a computer
screen

» To implement control i/o functionality capable of interfacing to a controller

* To design and implement a custom arcade game, using a VGA monitor and custom made
controller

If time allows, the following objectives will be completed
¢ To design and build a simple controller
* To design and implement sound effect functionality

* To implement more complex game functions, including a non volatile high score table, two
player mode, etc. etc.

APPENDIX B

Project parts list

Part Unit price
NES controller x 2 £3.99
NES 2 to 4 adaptor (Connectors) £12.00
Hirose FX-2 100-pin connector £5.45
74LCX125 £0.44
74HCT4066 £0.42
TDK PS1720P02 Piezoelectronic Buzzer £0.40
Total £22.70

& sauojEaNy [T eyze] (euondo

] FEaJfhold

SyeeL Mosnduod 0RO/ 17 PR BIEC

LaLLEl apede PUE laalp yas Paseq Yod 4 108lold

=)EE] pahUaLILIODaY el Bupean

Buibfingaq Augsa) tl

piing pue UBissp J9joauoo £l

i B 2}08)48 PUNDS J2j00ys oeds) L

Ll

E_ ufizap soydeld 1a1o0ys soeds;

Jajnoys soeds aaded | ol

Fj0aya punos Buod

ubizap sayclead fuog

aed Auod Jaie)d

Jswdojaasp awes)

N2 128 oA, BURA0AL Sy

Fah 10 salound Apngs)

pABOn JuSwWdo|aAap 10 Sagedes sa0|dxg

301 IS HiAs SEEIWE]

Rt L B o T B I P L Yt v}

FaERy - UieaT

@5 SHESN S EERERE

sz[8] vi] w0] 8z 12| #i] /0] 0g] £¢] 94| 60] 2] 2] B4] 24| 50] 2] 12| w] 0] Ve] #2] 21] 04] 0] iz] 02] £4] 90] B2 22

APPENDIX C
Project plan

Ok UEr] £l | EEE| B0, 0] B0, 055] E0, v | B0, T | auep Hsel

s

NES Controller: equivalent schematic diagram

APPENDIX D

SsA
[f\ﬂ
v | |
SSA gl 1 |
OpUB1IUIN
1J40d-S3N SSA & -
zZn T '
T1a
O O 8 “mg ._bm_._m_m_|_|_
NO
SSA
T VTN 9D gd ﬂ
80 /d »
8D
O O ¥ o] L * ldvis L1 |
z1 y A
sd < €1
IS rd
11 ¥ .
19 z . Sd £d <
> A2 zd
o BT e .
oA g aaa | ¢
91
& NMOQ 1|
0 0 prl 0 -0 0 Pl 0 pol —
- o w r |l N]l@]]|l \ﬂ
1437 L1 |
NG € H \H +
Ao+ LHoIMd |1 |

APPENDIX E

Python script for generating VHDL ROM from images

#! /usr/bin/env python

import os
import sys
from PIL import Image

def compare names(a, b):

""" compare function for sorting """
nl = a[:-4].split(' ')
n2 = b[:-4].split("' ')

if nl[0] == n2[0]:

return cmp(int(nl[1]), int(n2[1]))
else:

return cmp(int(nl[0]), int(n2[0]))

files = os.listdir(sys.argv[1])
files.sort(cmp = compare names)

output = "'
for i, file in enumerate(files):
if file.endswith('.png'):
img = Image.open(sys.argv[l] + file)

else:
break
temporary storage for bits
tmp = '
rom contents
output += '-- %d\n' % 1

for j, pixels in enumerate(list(img.getdata())):
tmp += '1' if pixels[0] == 255 else 'O’
we have 8 pixels in a row
if (j +1) % 8 == 0:
generate bit vector and comment

t = ""%s", -- %' % (tmp, tmp.replace('®', ' ').replace('l"’,
)

output += t.strip() + '\n'

temp = "'
sys.stdout.write(output)

#'))

APPENDIX F

Adaptor board schematic diagram

n
a
£

w
u
2

ss4

.,

Gl B}

b [l ars

20
s o TR RE RS
A+ fr=s L W
H - zia
cen e LI
T L e TEIRE T
-z
M-y
ke T T
S e S T R
o - rxa
o - zx
o (- 7
8 L T RS T
231 i I
= a3 e LT RS
R -, 70 - 2
M-y
e LI
san b o S R
g oo - g
as M-y
o - 7y
£ 08 Sz~ 2
a2 SEILIMEL b8 e AT R P
v T 3 TR T
o A - 0z
z - #r o -
' e TSP
23 3 e ST TR
ae I L BT RE LT
- s xM"nG_umxu
e TorTIxd
b3 e BT R
Asd TG 1z xa
a5 3 LR
[L AT
s PTG 17
oMgr—gxy
£ H 17y
o 17y
v G 1y
25, £ Lo, 2
" T - 001
s ¥ s5A pai e g =TS
o2 wa | mSWL 9T
S8A 88, T0DDA
- PEA s8yz1Img 02348
uziing
IA _H__l 13534
I =.szzng PRA

FEEELEY m—
sn

ss4

280
0BI-Zxd
THHZD gg

RER T
EZ‘MW [
o zx S

o M

394

Ast

suld DI pasnun

N
7
~

7,
L)
;\
N

"y
.I

L)
N
7

N 7
/
‘s

P
)
.§ fs
&
OFO;
.f.\ rs
2RS

.
ry
\

Y f.‘\ ’,
AP
NN
XS
Y I.'\
LA

b
.\
.

7))
=
7))
(5~
£
-
(V]
>
8
£
(=]
Sd
)
o
-]
=]
[=
(4+]
W- e Py
Sd
o
(@]
o
©
} S
5+
o
-]
-
(=]
-
(=
[5°]
=]
<

APPENDIX G

APPENDIX H

Photographs

| \‘\ \‘\‘\‘_\‘\‘\‘\‘NU\‘\‘\‘UHUN\HI\i' '

	1 Introduction
	1.1 About this report
	1.2 Project aims and plan

	2 Background
	2.1 Field-Programmable Gate Arrays
	Xilinx versus Altera

	2.2 Hardware description languages
	VHDL
	Digital systems theory

	Other HDLs

	2.3 Development board
	2.4 VGA
	Hardware
	Timing

	2.5 Nintendo controllers
	2.6 Principles of game implementation
	Logic blocks
	Objects

	3 Implementation
	3.1 VGA
	Code
	Results

	3.2 NES controller interface
	Code
	Results

	3.3 Graphics
	Storing images
	Getting the pixels
	Moving images
	Colour image storage

	3.4 Text generation
	Font
	Grid

	3.5 Binary to BCD conversion
	Theory
	VHDL implementation

	3.6 Sound
	Frequency generator
	Sound ROM
	Player

	4 Pong
	4.1 Structure
	4.2 Graphics
	Main logic
	Paddle logic
	Ball logic
	Scores

	4.3 Sounds & User input
	Sounds
	User input

	5 Space shooter
	5.1 Gameplay
	5.2 Graphics
	Main logic
	Aliens
	Spaceship and missile
	Explosion logic
	Score and level display

	6 Completing the project
	6.1 Game selection menu
	6.2 Combining the applications

	7 Adaptor board
	7.1 Reverse engineering the controllers
	7.2 TTL / CMOS level conversion
	FPGA to Shift register
	Shift register to FPGA

	7.3 Board design
	Schematic capture
	PCB layout design
	Manufacture

	8 Discussion
	8.1 Issues
	Pong ball acceleration
	Synchronisation problems
	Adaptor board
	Binary-to-BCD conversion

	8.2 Further work

	9 Conclusion
	References
	Bibliography
	Appendix A
	Initial technical proposal

	Appendix B
	Project parts list

	Appendix C
	Project plan

	Appendix D
	NES Controller: equivalent schematic diagram

	Appendix E
	Python script for generating VHDL ROM from images

	Appendix F
	Adaptor board schematic diagram

	Appendix G
	Adaptor board PCB: top and bottom layer masks

	Appendix H
	Photographs

